Andrographis

1. Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer. Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality in the USA. As much as 50–60% of CRC patients develop resistance to 5-fluorouracil (5FU)-based chemotherapeutic regimens, attributing the increased overall morbidity and mortality. In view of the growing evidence that active principles in various naturally occurring botanicals can facilitate chemosensitization in cancer cells, herein, we undertook a comprehensive effort in interrogating the activity of one such botanical—andrographis—by analyzing its activity in CRC cell lines [both sensitive and 5FU resistant (5FUR)], a xenograft animal model and patient-derived tumor organoids. We observed that combined treatment with andrographis was synergistic and resulted in a significant and dose-dependent increase in the efficacy of 5FU in HCT116 and SW480 5FUR cells (P < 0.05), reduced clonogenic formation (P < 0.01) and increased rates of caspase-9-mediated apoptosis (P < 0.05). The genomewide expression analysis in cell lines led us to uncover that activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways were the key mediators for the anti-cancer and chemosensitizing effects of andrographis. Subsequently, we validated our findings in a xenograft animal model, as well as two independent CRC patient-derived organoids—which confirmed that combined treatment with Andrographis was significantly more effective than 5FU and andrographis alone and that these effects were in part orchestrated through dysregulated expression of key genes (including HMOX1, GCLC, GCLM and TCF7L2) within the ferroptosis and Wnt-signaling pathways. Collectively, our data highlight that andrographis might offer a safe and inexpensive adjunctive therapeutic option in the management of CRC patients. [Sharma P, Shimura T, Banwait JK, Goel A. Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer. Carcinogenesis. 2020:1-10.]

2. Andrographis overcomes 5-fluorouracil associated chemoresistance through inhibition of DKK1 in colorectal cancer.Colorectal cancer (CRC) ranks as the third leading cause of cancer-related deaths in the US. 5-fluorouracil (5FU)-based chemotherapeutic drug remains a mainstay of CRC treatment. Unfortunately, ~50-60% of patients eventually develop resistance to 5FU, leading to poor survival outcomes. Our previous work revealed that andrographis enhanced 5FU-induced anti-cancer activity, but the underlying mechanistic understanding largely remains unclear. In this study, we first established 5FU resistant (5FUR) CRC cells and observed that combined treatment with andrographis-5FU in 5FUR cells exhibited superior effect on cell viability, proliferation and colony formation capacity compared to individual treatments (p<0.001). To identify key genes and pathways responsible for 5FU resistance, we analyzed genome-wide transcriptomic profiling data from CRC patients who either responded or did not respond to 5FU. Among a panel of differentially expressed genes, DKK1 overexpression was a critical event for 5FU resistance. Moreover, andrographis significantly downregulated 5FU-induced DKK1 overexpression, accompanied with enhanced anti-tumor effects by abrogating downstream Akt-phosphorylation. In line with in vitro findings, andrographis enhanced 5FU-induced anti-cancer activity in mice xenografts and patient-derived tumoroids (p<0.01). In conclusion, our data provide novel evidence for andrographis-mediated reversal of 5FU resistance, highlighting its potential role as an adjunct to conventional chemotherapy in CRC. [Zhao Y, Wang C, Goel A. Andrographis overcomes 5-fluorouracil associated chemoresistance through inhibition of DKK1 in colorectal cancer. Carcinogenesis. 2021. Advanced publication data: https://doi.org/10.1093/carcin/bgab027]

3. Enhanced anti cancer activity of andrographis with oligomeric proanthocyanidins through activation of metabolic and ferroptosis pathways in colorectal cancer.The high degree of morbidity and mortality in colorectal cancer (CRC) patients is largely due to the development of chemoresistance against conventional chemotherapeutic drugs. In view of the accumulating evidence that various dietary botanicals ofer a safe, inexpensive and multi-targeted treatment option, herein, we hypothesized that a combination of Andrographis paniculata and Oligomeric Proanthocyanidins (OPCs) might interact together with regard to anti-tumorigenic activity in CRC. As a result, we demonstrated the enhanced anti-cancer activity between these two botanical extracts in terms of their ability to inhibit cancer cell growth, suppress colony formation and induce apoptosis. Furthermore, we validated these fndings in subcutaneous xenograft model and in patient derived primary epithelial 3D organoids. Transcriptomic profling identifed involvement of metabolic pathways and ferroptosis-associated genes, including HMOX1, GCLC and GCLM, that may be responsible for the increased anti-tumorigenic activity by the two compounds. Collectively, our study provides novel evidence in support of the combinatorial use of andrographis and OPCs as a potential therapeutic option, perhaps as an adjunctive treatment to classical drugs, in patients with colorectal cancer. [Shimura T, Sharma P, Sharma GG, Banwait JK, Goel A. Sci Rep. 2021;11(1):7548.]